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Abstract

Patients with drug-refractory ventricular tachycardia (VT)
often undergo implantation of a cardiac defibrillator
(ICD). While life-saving, shock from an ICD can be trau-
matic. To combat the need for defibrillation, ICDs come
equipped with low-energy pacing protocols. These anti-
tachycardia pacing (ATP) methods are conventionally de-
livered from a lead inserted at the apex of the right ventri-
cle (RV) with limited success. Recent studies have shown
the promise of biventricular leads placed in the left ven-
tricle (LV) for ATP delivery. This study tested the hypoth-
esis that stimulating ATP from multiple biventricular lo-
cations will improve termination rates in a patient-specific
computational model. VT was first induced in the model,
followed by ATP delivery from 1-4 biventricular stimulus
sites. We found that combining stimulation sites does not
alter termination success so long as a critical stimulus site
is included. Combining the RV stimulus site with any com-
bination of LV sites did not affect ATP success except for
one case. Including the RV site may allow biventricular
ATP to be a robust approach across different scar distri-
butions without affecting the efficacy of other stimulation
sites. Combining sites may increase the likelihood of in-
cluding a critical stimulus site when such information can-
not be ascertained.

1. Introduction

Ventricular tachycardia (VT) affects over 300,000
Americans annually and is the leading cause of sudden car-
diac death [1]. VT is characterized by episodes of rapid
activation in the ventricular myocardium, resulting in de-
creased quality of life and increased risk of complications.
Patients with drug-refractory VT often undergo implanta-
tion of a cardiac defibrillator (ICD), which can automati-
cally deliver shocks during a VT episode. When shocks
occur, a high burst of energy is delivered to disrupt ar-

rhythmia and return the patient to sinus rhythm. While life-
saving, shock from an ICD can be traumatic, and recipients
often experience an increased incidence of depression and
anxiety [2]. To combat the need for defibrillation, ICDs
come equipped with low-energy pacing protocols. These
anti-tachycardia pacing (ATP) methods act as a first line of
defense to pace the heart out of VT without the need for a
full ICD shock. Conventional ATP is delivered from a sin-
gle lead inserted at the apex of the right ventricle (RV), but
its limited success has inspired alternate pacing locations
[3–5].

Previous studies have investigated biventricular pacing
(BiVP), which differs from traditional RV pacing in that
both the right ventricular apex and the left ventricular (LV)
free wall are paced. Patients with heart failure or LV dys-
function may have BiVP leads implanted to help synchro-
nize ventricular contractions [6]. This patient population
has been shown to have a high risk of developing ventric-
ular arrhythmias, yet, few studies have investigated using
BiVP leads to eliminate VT episodes [3, 7, 8]. Clinically,
BiVP as an ATP delivery method has been shown only to
benefit patients with ischemic heart disease and with VT
cycle lengths (CL) less than 320 ms, which has limited
BiVP as a standard ATP delivery method [4]. Computa-
tional studies have shown that ATP success depends on
the distance from the pacing site to the scar-dependent VT
exit site, the VT CL, and stimulus positions on the LV free
wall [9]. These studies have provided support for the LV
freewall as viable ATP delivery sites in a broader range of
VT morphologies. Neither study demonstrated efficacy in
human heart models nor investigated simultaneous pacing
protocols from combined stimulus sites. Furthermore, ICD
implantation often lacks knowledge of scar distribution or
VT exit sites. Therefore, implantation of a lead at the criti-
cal site for VT termination would be difficult without infor-
mation from a computational model or invasive mapping
procedures. Thus, a generalizable and clinically feasible
approach to biventricular ICD ATP delivery is needed.
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In this study, we tested the hypothesis that simultane-
ously stimulating ATP from multiple BiVP points may im-
prove termination rates over the conventional RV apex ap-
proach by increasing the likelihood of stimulating from
a site critical to VT termination. We examined the ef-
fect of clinically relevant biventricular pacing locations on
the ability to deliver ATP and terminate VT in a patient-
specific computational model of the ventricles.

2. Methods

Model Generation: Late-Gadolinium Enhanced Mag-
netic Resonance Images (LGE-MRI) were collected from
a single patient at the University of Utah health systems
and used to segment both ventricles. These ventricular
wall segmentations were used to generate a patient-specific
volumetric mesh using TetGen with average edge length
of 0.928 mm [10]. LGE-MRI signal intensity (SI) greater
than 70% of the maximum was defined as scar, while SI
greater than 40% of maximum was defined as fibrotic re-
gions.[11, 12] LV and RV blood pool segmentations were
used to identify the endocardial surface. A rule-based al-
gorithm was used to assign cardiac fiber angle throughout
the myocardium [13].

Electrophysiological Properties: The open-source
electrophysiology (EP) modeling software OpenCARP
was used for all simulations [14]. The monodomain for-
mulation was used to link individual cellular models de-
fined throughout the myocardium and solve the result-
ing reaction-diffusion equations. The ion exchange at the
cell membrane was modeled according to Ten Tusscher
and Panfilov (TTP) [15]. Tissue-slab simulations of the
TTP model were used to tune transverse and longitudi-
nal conductivities for each region (Table 1) with healthy
cells set to a value of 0.8 m/s in the longitudinal direc-
tion while fibrotic cells conducted at 0.4 m/s longitudi-
nally. Transverse conduction velocity were set at half of
the longitudinal for each region, respectively. Healthy re-
gions were assigned anisotropic conductivities, while fi-
brotic regions were more isotropic to replicate the electro-
physiology of diseased myocardium. Epicardial, endocar-
dial, and midmyocardial regions were defined as healthy,
with no changes to the membrane kinetics of their respec-
tive regions as defined in the TTP model. Fibrotic regions
were assigned modified membrane kinetics based on data
from previous literature, resulting in a longer action poten-
tial duration and decreased excitability compared to nor-
mal myocardium (Table 2) [16]. Scar regions were defined
as having zero conductivity.

Simulation Protocol: The patient-specific model un-
derwent VT induction protocols according to clinical con-
ventions, stimulated at four induction sites: RV apex, LV
apex, LV free wall, and ventricular septum. At each stim-
ulus site, a train of eight S1 pulses was independently ap-

Table 1. Region Conductivities.

Region CV (m/s) GL(S/m) GT (S/m)
Healthy 0.8 0.1274 0.0669
Border Zone 0.4 0.033 0.035
Scar 0.0 0.0 0.0

Table 2. Membrane Kinetic Changes in Border Zone.

Ion Channel Percent of Normal Conductivity
Na 38
CaL 31
Kr 30
Ks 20

plied at a pacing interval of 600 ms. Following the S1
train, the simulation was continued with a single S2 pulse.
The simulation was repeated for several S2 pacing inter-
vals ranging from 280 ms (the refractory period of the cell
model) to 350 ms. S2 simulations that initiated a VT cir-
cuit continued until a total simulation time of 10 seconds.
If electrical activity persisted at 10 seconds, the VT circuit
was visualized and confirmed to have stable reentry. Local
activation time maps of the VT were generated and used
to identify VT cycle length (CL) (Figure 2). The resultant
simulated VT reentry site and cycle length matched clin-
ical recordings of this patient as determined by a trained
electrophysiologist.

A single site at the RV apex and three sites along the lat-
eral LV free wall in the apicobasal direction were defined
as possible ATP delivery sites, representing feasible BiVP
ICD lead implantation sites (Figure 1). Of these sites, 1 to
4 were chosen for ATP delivery in subsequent simulations.
A single ATP train of 8 pulses at 88% of the VT CL was
applied from each ATP site combination. ATP was applied
when the ATP stimulus sites were excitable following the
first cycle of the clinically-matched VT circuit. The simu-
lation continued for an additional 8 seconds following the
onset of ATP. The absence of any active mesh elements
(>-40mV) at the final simulation time point following ATP
delivery determined the successful termination of VT.

3. Results

Termination of VT varied depending on the stimulus
sites utilized for delivery; these results are summarized in
Table 4.

When the lower LV free wall site was included
(LowFW), all ATP site combinations resulted in the ter-
mination of the VT circuit. When LV LowFW was not
a pacing site, only one other site resulted in termination.
Without the RV apex stimulation, the upper LV free wall
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Figure 1. AP cross-section of biventricular model with ATP stimulus
site definitions. Red is the mesh surface and gray is the cross-section
cut plane. (LowFW: Lower LV Free Wall, MidFW: Mid LV Free Wall,
UpFW: Upper LV Free Wall)

Figure 2. Right lateral cross-section of local activation time map with
stimulus site definitions and exit site. Blue represents the earliest sites of
activation in the analyzed VT beat. White areas are scar (no activation).

site could terminate the VT. Other pacing locations and
combinations on the LV free wall with RV pacing did not
change termination outcomes.

4. Discussion and Conclusions

Previous research demonstrated the ability of proximal
ATP locations to terminate fast VTs (<320ms) [4]. The
most proximal location to our exit site (LowFW, Table 4)
successfully terminated VT in all cases where that site was
included for ATP pacing. Interestingly, the second most
proximal site (RV apex) did not follow this trend. This
suggests that the critical distance for a single-point stimu-
lation to terminate VT may be highly sensitive and direc-

Table 3. VT Termination by ATP. A check mark signifies successful
termination and an X unsuccessful.

Site(s) Termination
RV ✗
RV + LowFW ✓
RV + MidFW ✗
RV + UpFW ✗
RV + LowFW + MidFW + UpFW ✓
RV + MidFW + UpFW ✗
RV + LowFW + MidFW ✓
RV + LowFW + UpFW ✓
LowFW ✓
MidFW ✗
UpFW ✓
LowFW + MidFW + UpFW ✓
MidFW + UpFW ✗
LowFW + MidFW ✓
LowFW + UpFW ✓

Table 4. Euclidean distance from pacing locations to VT exit site.

Site Distance (mm)
LowFW 20.61

RV 30.22
MidFW 55.44
UpFW 82.32

tional. Here we demonstrated that combining stimulation
sites does not alter termination success when the critical
point is included. Combining the RV apical stimulus site
with any combination of LV sites did not affect ATP suc-
cess except for one case. Thus, including the RV as a stim-
ulus site may not affect the efficacy of other stimulation
sites. Combining sites may increase the likelihood of in-
cluding a critical stimulus site when such information can-
not be ascertained. Further studies will be needed to assess
the robustness and feasibility of such an approach.

We suspect these observations largely depend on the
patient-specific infarct, its location, and the VT beat an-
alyzed. Clinically, these factors are rarely known at the
time of ICD implantation. To generalize ATP delivery
methods, comparing against other patient-specific models
is critical. In subsequent studies, we will add additional
patient-specific models and VT beats of varying CL to this
analysis and assess if the trends we observe in this case
persist.

The ATP method we applied in this study was a standard
8-beat train at 88% of the VT CL; however, this may not
be the ideal ATP protocol in the context of biventricular
ATP pacing. Further studies should compare other meth-
ods of ATP delivery, such as ramped pacing or other ATP
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CLs. Additionally, we only delivered ATP simultaneously
in combined cases. Future research should explore delay-
ing ATP delivery between combined sites, which may im-
prove the robustness of this approach across different pa-
tients and VT morphologies.
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